Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Geriatr Cardiol ; 21(3): 323-330, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38665288

ABSTRACT

BACKGROUND: Smartwatches have become readily accessible tools for detecting atrial fibrillation (AF). There remains limited data on how they affect psychosocial outcomes and engagement in older adults. We examine the health behavior outcomes of stroke survivors prescribed smartwatches for AF detection stratified by age. METHODS: We analyzed data from the Pulsewatch study, a randomized controlled trial that enrolled patients (≥ 50 years) with a history of stroke or transient ischemic attack and CHA2DS2-VASc ≥ 2. Intervention participants were equipped with a cardiac patch monitor and a smartwatch-app dyad, while control participants wore the cardiac patch monitor for up to 44 days. We evaluated health behavior parameters using standardized tools, including the Consumer Health Activation Index, the Generalized Anxiety Disorder questionnaire, the 12-Item Short Form Health Survey, and wear time of participants categorized into three age groups: Group 1 (ages 50-60), Group 2 (ages 61-69), and Group 3 (ages 70-87). We performed statistical analysis using a mixed-effects repeated measures linear regression model to examine differences amongst age groups. RESULTS: Comparative analysis between Groups 1, 2 and 3 revealed no significant differences in anxiety, patient activation, perception of physical health and wear time. The use of smartwatch technology was associated with a decrease in perception of mental health for Group 2 compared to Group 1 (ß = -3.29, P = 0.046). CONCLUSION: Stroke survivors demonstrated a willingness to use smartwatches for AF monitoring. Importantly, among these study participants, the majority did not experience negative health behavior outcomes or decreased engagement as age increased.

2.
PLoS One ; 19(3): e0299516, 2024.
Article in English | MEDLINE | ID: mdl-38457401

ABSTRACT

Point-of-care technology (POCT) plays a vital role in modern healthcare by providing a fast diagnosis, improving patient management, and extending healthcare access to remote and resource-limited areas. The objective of this study was to understand how healthcare professionals in the United States perceived POCTs during 2019-2021 to assess the decision-making process of implementing these newer technologies into everyday practice. A 5-point Likert scale survey was sent to respondents to evaluate their perceptions of benefits, concerns, characteristics, and development of point-of-care technologies. The 2021 survey was distributed November 1st, 2021- February 15th, 2022, with a total of 168 independent survey responses received. Of the respondents, 59% identified as male, 73% were white, and 48% have been in practice for over 20 years. The results showed that most agreed that POCTs improve patient management (94%) and improve clinician confidence in decision making (92%). Healthcare professionals were most concerned with potentially not being reimbursed for the cost of the POCT (37%). When asked to rank the top 3 important characteristics of POCT, respondents chose accuracy, ease of use, and availability. It is important to note this survey was conducted during the COVID-19 pandemic. To achieve an even greater representation of healthcare professionals' point of view on POCTs, further work to obtain responses from a larger, more diverse population of providers is needed.


Subject(s)
Pandemics , Point-of-Care Systems , Humans , Male , Health Personnel , Delivery of Health Care , Surveys and Questionnaires
3.
Ann Intern Med ; 176(7): 975-982, 2023 07.
Article in English | MEDLINE | ID: mdl-37399548

ABSTRACT

BACKGROUND: The performance of rapid antigen tests (Ag-RDTs) for screening asymptomatic and symptomatic persons for SARS-CoV-2 is not well established. OBJECTIVE: To evaluate the performance of Ag-RDTs for detection of SARS-CoV-2 among symptomatic and asymptomatic participants. DESIGN: This prospective cohort study enrolled participants between October 2021 and January 2022. Participants completed Ag-RDTs and reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 every 48 hours for 15 days. SETTING: Participants were enrolled digitally throughout the mainland United States. They self-collected anterior nasal swabs for Ag-RDTs and RT-PCR testing. Nasal swabs for RT-PCR were shipped to a central laboratory, whereas Ag-RDTs were done at home. PARTICIPANTS: Of 7361 participants in the study, 5353 who were asymptomatic and negative for SARS-CoV-2 on study day 1 were eligible. In total, 154 participants had at least 1 positive RT-PCR result. MEASUREMENTS: The sensitivity of Ag-RDTs was measured on the basis of testing once (same-day), twice (after 48 hours), and thrice (after a total of 96 hours). The analysis was repeated for different days past index PCR positivity (DPIPPs) to approximate real-world scenarios where testing initiation may not always coincide with DPIPP 0. Results were stratified by symptom status. RESULTS: Among 154 participants who tested positive for SARS-CoV-2, 97 were asymptomatic and 57 had symptoms at infection onset. Serial testing with Ag-RDTs twice 48 hours apart resulted in an aggregated sensitivity of 93.4% (95% CI, 90.4% to 95.9%) among symptomatic participants on DPIPPs 0 to 6. When singleton positive results were excluded, the aggregated sensitivity on DPIPPs 0 to 6 for 2-time serial testing among asymptomatic participants was lower at 62.7% (CI, 57.0% to 70.5%), but it improved to 79.0% (CI, 70.1% to 87.4%) with testing 3 times at 48-hour intervals. LIMITATION: Participants tested every 48 hours; therefore, these data cannot support conclusions about serial testing intervals shorter than 48 hours. CONCLUSION: The performance of Ag-RDTs was optimized when asymptomatic participants tested 3 times at 48-hour intervals and when symptomatic participants tested 2 times separated by 48 hours. PRIMARY FUNDING SOURCE: National Institutes of Health RADx Tech program.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Prospective Studies , SARS-CoV-2 , Polymerase Chain Reaction , Cognition , Sensitivity and Specificity
4.
medRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865199

ABSTRACT

Background: The performance of rapid antigen tests for SARS-CoV-2 (Ag-RDT) in temporal relation to symptom onset or exposure is unknown, as is the impact of vaccination on this relationship. Objective: To evaluate the performance of Ag-RDT compared with RT-PCR based on day after symptom onset or exposure in order to decide on 'when to test'. Design Setting and Participants: The Test Us at Home study was a longitudinal cohort study that enrolled participants over 2 years old across the United States between October 18, 2021 and February 4, 2022. All participants were asked to conduct Ag-RDT and RT-PCR testing every 48 hours over a 15-day period. Participants with one or more symptoms during the study period were included in the Day Post Symptom Onset (DPSO) analyses, while those who reported a COVID-19 exposure were included in the Day Post Exposure (DPE) analysis. Exposure: Participants were asked to self-report any symptoms or known exposures to SARS-CoV-2 every 48-hours, immediately prior to conducting Ag-RDT and RT-PCR testing. The first day a participant reported one or more symptoms was termed DPSO 0, and the day of exposure was DPE 0. Vaccination status was self-reported. Main Outcome and Measures: Results of Ag-RDT were self-reported (positive, negative, or invalid) and RT-PCR results were analyzed by a central laboratory. Percent positivity of SARS-CoV-2 and sensitivity of Ag-RDT and RT-PCR by DPSO and DPE were stratified by vaccination status and calculated with 95% confidence intervals. Results: A total of 7,361 participants enrolled in the study. Among them, 2,086 (28.3%) and 546 (7.4%) participants were eligible for the DPSO and DPE analyses, respectively. Unvaccinated participants were nearly twice as likely to test positive for SARS-CoV-2 than vaccinated participants in event of symptoms (PCR+: 27.6% vs 10.1%) or exposure (PCR+: 43.8% vs. 22.2%). The highest proportion of vaccinated and unvaccinated individuals tested positive on DPSO 2 and DPE 5-8. Performance of RT-PCR and Ag-RDT did not differ by vaccination status. Ag-RDT detected 78.0% (95% Confidence Interval: 72.56-82.61) of PCR-confirmed infections by DPSO 4. For exposed participants, Ag-RDT detected 84.9% (95% CI: 75.0-91.4) of PCR-confirmed infections by day five post-exposure (DPE 5). Conclusions and Relevance: Performance of Ag-RDT and RT-PCR was highest on DPSO 0-2 and DPE 5 and did not differ by vaccination status. These data suggests that serial testing remains integral to enhancing the performance of Ag-RDT.

5.
medRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-35982680

ABSTRACT

Background: Performance of rapid antigen tests for SARS-CoV-2 (Ag-RDT) varies over the course of an infection, and their performance in screening for SARS-CoV-2 is not well established. We aimed to evaluate performance of Ag-RDT for detection of SARS-CoV-2 for symptomatic and asymptomatic participants. Methods: Participants >2 years old across the United States enrolled in the study between October 2021 and February 2022. Participants completed Ag-RDT and molecular testing (RT-PCR) for SARS-CoV-2 every 48 hours for 15 days. This analysis was limited to participants who were asymptomatic and tested negative on their first day of study participation. Onset of infection was defined as the day of first positive RT-PCR result. Sensitivity of Ag-RDT was measured based on testing once, twice (after 48-hours), and thrice (after 96 hours). Analysis was repeated for different Days Post Index PCR Positivity (DPIPP) and stratified based on symptom-status. Results: In total, 5,609 of 7,361 participants were eligible for this analysis. Among 154 participants who tested positive for SARS-CoV-2, 97 were asymptomatic and 57 had symptoms at infection onset. Serial testing with Ag-RDT twice 48-hours apart resulted in an aggregated sensitivity of 93.4% (95% CI: 89.1-96.1%) among symptomatic participants on DPIPP 0-6. Excluding singleton positives, aggregated sensitivity on DPIPP 0-6 for two-time serial-testing among asymptomatic participants was lower at 62.7% (54.7-70.0%) but improved to 79.0% (71.0-85.3%) with testing three times at 48-hour intervals. Discussion: Performance of Ag-RDT was optimized when asymptomatic participants tested three-times at 48-hour intervals and when symptomatic participants tested two-times separated by 48-hours.

6.
Ann Intern Med ; 175(12): 1685-1692, 2022 12.
Article in English | MEDLINE | ID: mdl-36215709

ABSTRACT

BACKGROUND: It is important to document the performance of rapid antigen tests (Ag-RDTs) in detecting SARS-CoV-2 variants. OBJECTIVE: To compare the performance of Ag-RDTs in detecting the Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2. DESIGN: Secondary analysis of a prospective cohort study that enrolled participants between 18 October 2021 and 24 January 2022. Participants did Ag-RDTs and collected samples for reverse transcriptase polymerase chain reaction (RT-PCR) testing every 48 hours for 15 days. SETTING: The parent study enrolled participants throughout the mainland United States through a digital platform. All participants self-collected anterior nasal swabs for rapid antigen testing and RT-PCR testing. All Ag-RDTs were completed at home, whereas nasal swabs for RT-PCR were shipped to a central laboratory. PARTICIPANTS: Of 7349 participants enrolled in the parent study, 5779 asymptomatic persons who tested negative for SARS-CoV-2 on day 1 of the study were eligible for this substudy. MEASUREMENTS: Sensitivity of Ag-RDTs on the same day as the first positive (index) RT-PCR result and 48 hours after the first positive RT-PCR result. RESULTS: A total of 207 participants were positive on RT-PCR (58 Delta, 149 Omicron). Differences in sensitivity between variants were not statistically significant (same day: Delta, 15.5% [95% CI, 6.2% to 24.8%] vs. Omicron, 22.1% [CI, 15.5% to 28.8%]; at 48 hours: Delta, 44.8% [CI, 32.0% to 57.6%] vs. Omicron, 49.7% [CI, 41.6% to 57.6%]). Among 109 participants who had RT-PCR-positive results for 48 hours, rapid antigen sensitivity did not differ significantly between Delta- and Omicron-infected participants (48-hour sensitivity: Delta, 81.5% [CI, 66.8% to 96.1%] vs. Omicron, 78.0% [CI, 69.1% to 87.0%]). Only 7.2% of the 69 participants with RT-PCR-positive results for shorter than 48 hours tested positive by Ag-RDT within 1 week; those with Delta infections remained consistently negative on Ag-RDTs. LIMITATION: A testing frequency of 48 hours does not allow a finer temporal resolution of the analysis of test performance, and the results of Ag-RDTs are based on self-report. CONCLUSION: The performance of Ag-RDTs in persons infected with the SARS-CoV-2 Omicron variant is not inferior to that in persons with Delta infections. Serial testing improved the sensitivity of Ag-RDTs for both variants. The performance of rapid antigen testing varies on the basis of duration of RT-PCR positivity. PRIMARY FUNDING SOURCE: National Heart, Lung, and Blood Institute of the National Institutes of Health.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Humans , Prospective Studies , Self-Testing , Sensitivity and Specificity
7.
medRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262091

ABSTRACT

Background: There is a need to understand the performance of rapid antigen tests (Ag-RDT) for detection of the Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) SARS-CoV-2 variants. Methods: Participants without any symptoms were enrolled from October 18, 2021 to January 24, 2022 and performed Ag-RDT and RT-PCR tests every 48 hours for 15 days. This study represents a non-pre-specified analysis in which we sought to determine if sensitivity of Ag-RDT differed in participants with Delta compared to Omicron variant. Participants who were positive on RT-PCR on the first day of the testing period were excluded. Delta and Omicron variants were defined based on sequencing and date of first RT-PCR positive result (RT-PCR+). Comparison of Ag-RDT performance between the variants was based on sensitivity, defined as proportion of participants with Ag-RDT+ results in relation to their first RT-PCR+ result, for different duration of testing with rapid Ag-RDT. Subsample analysis was performed based on the result of participants' second RT-PCR test within 48 hours of the first RT-PCR+ test. Results: From the 7,349 participants enrolled in the parent study, 5,506 met the eligibility criteria for this analysis. A total of 153 participants were RT-PCR+ (61 Delta, 92 Omicron); among this group, 36 (23.5%) tested Ag-RDT+ on the same day, and 84 (54.9%) tested Ag-RDT+ within 48 hours as first RT-PCR+. The differences in sensitivity between variants were not statistically significant (same-day: Delta 16.4% [95% CI: 8.2-28.1] vs Omicron 28.2% [95% CI: 19.4-38.6]; and 48-hours: Delta 45.9% [33.1-59.2] vs. Omicron 60.9% [50.1-70.9]). This trend continued among the 86 participants who had consecutive RT-PCR+ result (48-hour sensitivity: Delta 79.3% [60.3-92.1] vs. Omicron: 89.5% [78.5-96.0]). Conversely, the 38 participants who had an isolated RT-PCR+ remained consistently negative on Ag-RDT, regardless of the variant. Conclusions: The performance of Ag-RDT is not inferior among individuals infected with the SARS-CoV-2 Omicron variant as compared to the Delta variant. The improvement in sensitivity of Ag-RDT noted with serial testing is consistent between Delta and Omicron variant. Performance of Ag-RDT varies based on duration of RT-PCR+ results and more studies are needed to understand the clinical and public health significance of individuals who are RT-PCR+ for less than 48 hours.

SELECTION OF CITATIONS
SEARCH DETAIL
...